空分设备网
qtsb.huajx.com铝合金具有高比强度、高疲劳强度以及良好的断裂韧性和较低的裂纹扩展率,同时还具有优良的成形工艺性和良好的抗腐蚀性。它在航空、航天、汽车、机械制造、船舶及化学工业中已被大量应用。铝合金的广泛应用促进了铝合金激光焊接技术的发展,同时激光焊接技术的发展又拓展了铝合金的应用领域。
铝合金本身的特性使得其相关的焊接技术面临着一些亟待解决的问题:表面难熔的氧化膜、接头软化、易产生气孔、容易热变形以及热导率过大等。传统的铝合金焊接一般采用TIG焊或MIG焊工艺,虽然这两种焊接方式能量密度较大,焊接铝合金时能获得良好的接头,但仍然存在熔透能力差、焊接变形大、生产效率低等缺点。欧洲空中客车公司生产的A340飞机机身,就采用激光焊接技术取代原有的铆接工艺,使机身的重量减轻18%左右,制造成本降低了近25%。
激光焊接展示
德国奥迪公司A2和A8全铝结构轿车也获益于铝合金激光焊接技术的开发和应用。而现在随着工业的进步,目前工业激光广泛的被应用,激光焊接具有功率密度高、焊接热输入低、焊接热影响区小和焊接变形小等优点,使其在铝合金焊接领域受到格外的重视。
铝合金激光焊接的问题和对策
铝合金表面的高反射性和高导热性
由于铝合金中存在密度很大的自由电子,自由电子受到激光强迫震动而产生次级电磁波,造成强烈的反射波和较弱的透射波,因而铝合金表面对激光具有较高的反射率和很小的吸收率。同时,自由电子的布朗运动受激而变得更为剧烈,所以铝合金也具有很高的导热性。
针对铝合金对激光的高反射性,国内外已作了大量研究,试验结果表明,进行适当的表面预处理如喷砂处理、砂纸打磨、表面化学浸蚀、表面镀、石墨涂层、空气炉中氧化等均可以降低光束反射,有效地增大铝合金对光束能量的吸收。另外,从焊接结构设计方面考虑,在铝合金表面人工制孔或采用光收集器形式接头,开V形坡口或采用拼焊方法,都可以增加铝合金对激光的吸收,获得较大的熔深。另外,还可以利用合理设计焊接缝隙来增加铝合金表面对激光能量的吸收。
小孔效应及等离子体对铝合金激光焊接的影响
在铝合金激光焊接过程里,小孔的出现可以提高材料对激光的吸收率,焊接可以获得更多的能量,而铝元素以及铝合金中的Mg、Zn、Li沸点低、易蒸发且蒸汽压大,虽然这有助于小孔的形成,但等离子体的冷却作用使得等离子体本身"过热",却阻碍了小孔维持连续存在,容易产生气孔等焊接缺陷,从而影响焊接成形和接头的力学性能,所以小孔的诱导和稳定成为保证激光焊接质量的一个重点。
由于铝合金的高反射性和高导热性,要诱导小孔的形成就需要激光有更高的能量密度。由于能量密度阈值的高低本质上受其合金成分的控制,因此可以通过控制工艺参数,选择确定激光功率保证合适的热输入量,来获得稳定的焊接过程。另外,能量密度阈值一定程度上还受到保护气体种类的影响。例如,激光焊接铝合金时使用N2气时可较容易地诱导出小孔,而使用He气则不能诱导出小孔。这是因为N2和Al之间可发生放热反应,生成的Al-N-O三元化合物提高了对激光吸收率。
铝合金激光焊接中产生的气孔分析
铝合金种类不同,产生的气孔类型也不同。一般认为,铝合金在激光焊接过程中产生以下几类气孔。
氢气孔:铝合金在有氢的环境中熔化后,其内部的含氢量可达到0.69ml/100g以上。但凝固以后,其平衡状态下的溶氢能力多只有0.036ml/100g,两者相差近20倍。因此,在由液态向固态转变的过程中,液态铝中多余的氢气必定要析出。如果析出的氢不能顺利上浮逸出,就会聚集成气泡残留在固态铝合金成为气孔。
保护气体产生的气孔:在高能激光焊接铝合金的过程中,由于熔池底部小孔前沿金属的强烈蒸发,使保护气体被卷入熔池形成气泡,当气泡来不及逸出而残留在固态铝合金中即成为气孔。
小孔塌陷产生的气孔:在激光焊接过程中,当表面张力大于蒸气压力时,小孔将不能维持稳定而塌陷,金属来不及填充就形成了孔洞。对减少或避免铝合金激光焊接中的气孔缺陷也有很多实际措施,如调整激光功率波形,减少小孔不稳定塌陷,改变光束焦点高度和倾斜照射,在焊接过程时施加电磁经场作用以及在真空中进行焊接等。近几年来,又出现了采用填丝或预置合金粉未、复合热源和双焦点技术来减少气孔产生的工艺,有不错的效果。
铝合金裂纹问题分析
铝合金属于典型的共晶合金,在激光焊接快速凝固下更容易产生热裂纹,焊缝金属结晶时在柱状晶边界形成AL-Si或Mg-Si等低熔点共晶是导致裂纹产生的原因。为减少热裂纹,可以采用填丝或预置合金粉未等方法进行激光焊接。通过调整激光波形,控制热输入也可以减少结晶裂纹。
铝合金激光焊接为人引人关注的特点是其率,而要充分发挥这种率就是把它运用到大厚度深熔焊接中。改善激光焊接过程的稳定性和焊缝成形、提高焊接质量是人们追求的目标。因此,激光-电弧复合工艺、填丝激光焊接、预置粉未激光焊接、双焦点技术以及光束整形等新技术将会得到进一步完善和发展。
通用光纤激光焊接机